
Poster: Isolating PIM from OS Level Adversaries

Fabian van Rissenbeck1, Amit Choudhari2, and Christian Rossow2

1 TU Dortmund University, August-Schmidt-Straße 1, 44227 Dortmund, Germany
2 CISPA Helmholtz Center for Information Security, Stuhlsatzenhaus 5, 66123

Saarbrücken, Germany

1 Motivation and Background

Modern cloud infrastructures run data-intensive workloads in multi-tenant envi-
ronments, where shared hardware resources–especially CPU caches–are vulner-
able to side-channel attacks that reveal access patterns [2]. While cache isola-
tion can mitigate these risks, it is impractical at scale [3]. Processing-in-Memory
(PIM) architectures, like UPMEM’s, restructure traditional von Neumann archi-
tectures by embedding small RISC-style processors directly into DRAM chips
[5, 4]. A PIM architecture can be beneficial for combating some classes of side-
channel attacks, because moving computation closer to data inherently reduces
the amount of cache-based leakage. Current PIM systems lack critical security
primitives such as secure key storage and random number generation, however
some simulated PIM architectures have included such hardware extensions [1].
Additionally, we currently see no mechanism to leverage Trusted Execution En-
vironments (TEEs) like Intel SGX and Arm TrustZone to extend their protection
to PIM modules, leaving PIM fully exposed in scenarios with strong adversaries.
We propose a software-based solution leveraging a trusted hypervisor and TPM
to enable PIM computation within a trusted environment.

2 Problem Statement

A host system utilizes two channels for communication with UPMEM’s Data
Processing Units (DPUs): A shared memory between host and DPU for trans-
ferring bulk data (MRAM) and a hardware register called the Control Interface
(CI). The CI exposes primitives to load new code, access DPU internal registers
and read the contents of DPU local memories. A malicious operating system
could easily abuse the CIs to extract sensitive data or manipulate the results of
an otherwise benign compute task, even the execution of malicious DPU code
can be forced using its CI. Securing the CIs is therefore critical. Furthermore,
data transfers between the CPU and DPUs, stored unencrypted in MRAM, are
vulnerable to interception or tampering. Securing MRAM based data transfers
via encryption is non-trivial as the DPUs lack hardware-based sources of entropy,
which prevents secure local key generation. Finally, DPUs lack direct intercom-
munication paths, forcing all traffic to pass through the potentially compromised
host system (i.e. via CPU). This bottleneck severely limits scalability for work-
loads that depend on frequent aggregation of results across multiple DPUs.



2 F. van Rissenbeck, A. Choudhari, et al.

3 Proposed Approach

We address the issue with the adversary-exposed CIs, by introducing a thin,
trusted hypervisor, that unmaps the CIs and replaces them with a software-
defined, Virtual Control Interface (VCI). The VCI commands are interpreted by
a small program that we call the CI-switch, embedded within trusted hypervi-
sor. To minimize the attack surface, we implement only the most essential CI
functionalities in the VCI, explicitly removing capabilities such as loading new
code.

Since the VCI is significantly less powerful than its hardware counterpart,
we modify the communication paradigm with DPUs. Instead of deploying short-
lived, single task DPU kernels, we use a persistent DPU kernel deployed at boot
time by the trusted hypervisor, that implements all necessary functions for a
given task. To interact with these functions, we define a half-duplex messaging
protocol, carried over MRAM. As MRAM accesses need to be synchronized
between DPU and host, we leverage a DPU feature that allows it to enter fault
states, which the host can then resolve.

To secure the message transmission over MRAM–an adversary exposed channel–
we include a compact implementation of the AES-CCM authenticated cipher
mode within the DPU kernel. This ensures encryption and authentication and a
replay-detection mechanism. A fresh key is derived for each client, based on an
initial value provided on startup by the trusted hypervisor and with assistance
from a trusted third party.

Finally, to scale up computation across multiple DPUs, we introduce a user-
level router that facilitates data exchange between client and DPUs. This enables
efficient broadcasting, inter-DPU communication and allowing aggregation steps
to be performed directly on the DPUs by forwarding inter-DPU messages. The
router software operates without the knowledge of any DPU internal secrets and
cannot decrypt the messages that it forwards.

4 Experimental Validation

We evaluated our framework using a decision tree classification workload (prone
to memory access pattern leaks), and compared it against a baseline PIM setup,
a naive CPU implementation, and an oblivious (ORAM-based) CPU version. For
large inputs (≥1GiB), the secure PIM platform is 27x slower than the baseline
PIM and 7× slower than the naive CPU but outperforms the ORAM-protected
CPU by 18x. This performance gap is mainly due to software-based encryption
and decryption, accounting for up to 95% of total DPU runtime in lightweight
workloads. Additional overhead arises from single-threaded client-side encryption
and inefficient data movement in the user-level router, both of which could be
improved through multithreading and optimized data handling. Virtualization
overhead is minimal, indicating that the main performance trade-offs originate
from the secure PIM design rather than the hypervisor.



Poster: Isolating PIM from OS Level Adversaries 3

Currently, the DPU kernel cannot be dynamically replaced after boot. Data
exchange relies on fault-state synchronization and a messaging model, differing
from traditional host-driven PIM usage.

5 Conclusion and Future Directions

Our software-only security framework isolates control registers through virtu-
alization and secures data in MRAM with lightweight encryption. Despite of
the performance overhead, the platform significantly outperforms CPU-based
oblivious models for access-pattern protection. For future work, we will inves-
tigate mechanisms to allow the safe execution of user provided code, including
an attestation mechanism, to enhance platform flexibility. We further aim to
reduce the trusted hypervisor’s responsibilities, integration of TPMs and TEEs
for enhanced hypervisor security and key provisioning.

This study demonstrates that a trusted hypervisor, combined with crypto-
graphically hardened DPUs, can close critical security gaps in PIM systems,
enabling secure, multi-tenant cloud computation without the need for hardware
modifications.

References

1. Duy, K.D., Lee, H.: SE-PIM: in-memory acceleration of
data-intensive confidential computing. IEEE Trans. Cloud
Comput. (2023). https://doi.org/10.1109/TCC.2022.3207145,
https://doi.org/10.1109/TCC.2022.3207145

2. Godfrey, M.M., Zulkernine, M.: Preventing cache-based side-
channel attacks in a cloud environment. IEEE Trans. Cloud
Comput. (2014). https://doi.org/10.1109/TCC.2014.2358236,
https://doi.org/10.1109/TCC.2014.2358236

3. Mittal, S.: A survey of techniques for cache partitioning in multicore
processors. ACM Comput. Surv. (2017). https://doi.org/10.1145/3062394,
https://doi.org/10.1145/3062394

4. Mutlu, O., Ghose, S., Gómez-Luna, J., Ausavarungnirun, R.: A Modern Primer on
Processing in Memory. CoRR (2020), https://arxiv.org/abs/2012.03112

5. UPMEM: Processing In-Memory: Ultra-Efficient Acceleration for Data-Intensive
Applications. Tech. rep., UPMEM (2024), https://www.upmem.com/technology/


